Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 2(11): 5335-5342, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36132020

RESUMO

Amorphous silicon nanoparticles were synthesized through pyrolysis of silane gas at temperatures ranging from 575 to 675 °C. According to the used temperature and silane concentration, two distinct types of particles can be obtained: at 625 °C, spherical particles with smooth surface and a low degree of aggregation, but at a higher temperature (650 °C) and lower silane concentration, particles with extremely rough surfaces and high degree of aggregation are found. This demonstrates the importance of the synthesis temperature on the morphology of silicon particles. The two types of silicon nanoparticles were subsequently used as active materials in a lithium half cell configuration, using LiPF6 in an alkylcarbonate-based electrolyte, in order to investigate the impact of the particles morphology on the cycling performances of silicon anode material. The difference in morphology of the particles resulted in different volume expansions, which impacts the solid electrolyte interface (SEI) formation and, as a consequence, the lifetime of the electrode. Half-cells fabricated from spherical particles demonstrated almost 70% capacity retention for over 300 cycles, while the cells made from the rough, aggregated particles showed a sharp decrease in capacity after the 20th cycle. The cycling results underline the importance of Si particle engineering and its influence on the lifetime of Si-based materials.

2.
Nano Lett ; 15(9): 6047-50, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26302464

RESUMO

Carbon deposition on nickel anodes degrades the performance of solid oxide fuel cells that utilize hydrocarbon fuels. Nickel anodes with BaO nanoclusters deposited on the surface exhibit improved performance by delaying carbon deposition (i.e., coking). The goal of this research was to visualize early stage deposition of carbon on nickel surface and to identify the role BaO nanoclusters play in coking resistance. Electrostatic force microscopy was employed to spatially map carbon deposition on nickel foils patterned with BaO nanoclusters. Image analysis reveals that upon propane exposure initial carbon deposition occurs on the Ni surface at a distance from the BaO features. With continued exposure, carbon deposits penetrate into the BaO-modified regions. After extended exposure, carbon accumulates on and covers BaO. The morphology and spatial distribution of deposited carbon was found to be sensitive to experimental conditions.

3.
ChemSusChem ; 7(11): 3078-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205041

RESUMO

Information from ex situ characterization can fall short in describing complex materials systems simultaneously exposed to multiple external stimuli. Operando X-ray absorption spectroscopy (XAS) was used to probe the local atomistic and electronic structure of specific elements in a La0.6Sr0.4Co0.2Fe0.8O(3-δ) (LSCF) thin film cathode exposed to air contaminated with H2O and CO2 under operating conditions. While impedance spectroscopy showed that the polarization resistance of the LSCF cathode increased upon exposure to both contaminants at 750 °C, XAS near-edge and extended fine structure showed that the degree of oxidation for Fe and Co decreases with increasing temperature. Synchrotron-based X-ray photoelectron spectroscopy tracked the formation and removal of a carbonate species, a Co phase, and different oxygen moieties as functions of temperature and gas. The combined information provides insight into the fundamental mechanism by which H2O and CO2 cause degradation in the cathode of solid oxide fuel cells.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Ferro/química , Lantânio/química , Estrôncio/química , Dióxido de Carbono/química , Espectroscopia Dielétrica , Eletrodos , Óxidos/química , Espectroscopia Fotoeletrônica , Água/química , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...